Milestone Review Flysheet 2023-2024

Institution North Carolina State University

Vehicle Properties			
Total Length (in)	105.43		
Diameter (in)	6.17		
Aspect Ratio	17.09 1		
Gross Lift Off Weight (lb)	49.59		
Ballast Amount (lb) / Material / Location	3.2 / Steel Nuts / RFS		
Launch Vehicle Burn Out Weight (lb)	45.57		
Airframe Material(s)	G12 Fiberglass		
Fin Material and Thickness (in)	G10 Fiberglass, 1/8		
Coupler Length(s)/Shoulder Length(s) (in)	3 (Nosecone), 4.5 (AV), 6 (AV)		

Motor Properties		
Motor Brand/Designation	AeroTech L1940X	
Max/Average Thrust (lb)	521.21/435.97	
Total Impulse (lbf-s)	973.24	
Mass Before/After Burn (oz)	8.50/4.47	
Liftoff Thrust (lb)	509.05	
Motor Retention Method	AeroTech Motor Retainer, RFS Centering Rings	

Stability Analysis				
Center of Pressure (in. from nose)	77.9			
Center of Gravity (in. from nose)	60.94			
Static Stability Margin (on pad)	2.75			
Static Stability Margin (at rail exit)	2.81			
Max/ Avg Thrust-to-Weight Ratio	10.26/8.64			
Rail Size/Type and Length (in)	1515/144			
Rail Exit Velocity (ft/s)	43.01			

Ascent Analysis			
Maximum Velocity (ft/s)	555.24		
Maximum Mach Number	0.509		
Maximum Acceleration (ft/s^2)	299.26		
Target Apogee (ft)	4050		
Predicted Apogee (From Sim.) (ft)	4048.67		

Recovery System Properties - Overall			
Total Descent Time (s) 81.54			
Total Drift in 20 mph winds (ft)	2391.81		

Recovery System Properties - Energetics			
Ejection System Energetics (ex. Black Powder)		#FFF Black Powder	
Energetics Mass - Drogue Chute (grams)	Primary	2.5	
	Backup	3	
Energetics Mass - Main Chute (grams)	Primary	4.5	
	Backup	5	
Energetics Mass - Other	ergetics Mass - Other Primary	N/A	
(grams) - If Applicable	Backup	N/A	

Recovery System Properties - Recovery Electronics			
Primary Altimeter Make/Model		MissleWorks RRC3	
Secondary Altimeter Mak	e/Model	Eggtimer Quasar	
Other Altimeters (if app	licable)	N/A	
Rocket Locator (Make/Model)		Eggtimer Quasar	
Additional Locators (if applicable)		Big Red Bee 900	
Transmitting Frequencies (all - vehicle and payload)		420.25 MHz	
		900 MHz	
Describe Redundancy Plan (batteries, switches, etc.)	The Quasar tracker and duel deploy altimeter will have its own battery, and the RRC3 pirimatry altimeter will have its own battery. Each altiemter has its own e- matches, mechanical arming switch, and two ejection charges.		
Pad Stay Time (Launch Configuration)	2.9 Hr		

Critical Design Review

Milestone

Recovery System Properties - Drogue Parachute					
Man	ufacturer/Mod	lel	Fruity Chutes Classic Elliptical		
Size or	Diameter (in o	or ft)	15 in		
Main Altime	eter Deployme	nt Setting	Apogee		
Backup Altim	neter Deploym	ent Setting	Apogee +	Apogee + 1 second	
Velocity	at Deployment	t (ft/s)	()	
Term	inal Velocity (ft	:/s)	110	.13	
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		5/8 in. Tubular Kevlar			
Recovery Harness Length (ft)			19 ft		
Harness/Airframe Interfaces the shock cord.		be attached to bowline knots in The quick links will be attached bolts on the bulkheads			
Kinetic Energy of Each Section (Ft-lbs)	Section 1	Section 2	Section 3	Section 4	
	1012.74	2280.18	3274.73	N/A	

Recovery System Properties - Main Parachute				
Man	ufacturer/Mod	lel	Fruity Chutes Compact Elliptical; Fruity Chutes Classic Elliptical	
Size or	Diameter (in o	or ft)	96 in ; 48 in	
Main Altime	eter Deployme	nt Setting	800 ft	
Backup Altin	neter Deploym	ent Setting	700) ft
Velocity	at Deployment	t (ft/s)	110	.13
Terminal Velocity (ft/s)		15.38; 15.83		
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		5/8 in. Tubular Kevlar		
Recovery Harness Length (ft)		8.5; 9		
Harness/Airframe Interfaces the shock cord.		be attached to bowline knots in . The quick links will be attached bolts on the bulkheads		
Kinetic Energy of Each Section (Ft-lbs)	Section 1	Section 2	Section 3	Section 4
	20.97	44.47 63.89 N/ <i>i</i>		N/A

Milestone Review Flysheet 2023-2024

Institution North Carolina State University Milestone Critical Design Review

	Payload
Payload 1 (official payload)	Overview The payload on board this year's launch vehicle is the STEMnauts Atmosphere Independent Lander, or SAIL. The goal of this payload is to safely transport four non-living passengers, known as STEMnauts, from the launch vehicle to the ground without the use of a parachute. This will be achieved by using a contra-rotating set of rotor blades powered by an electric motor. The lander will be contained within a body tube know as the deployment bay. The deployment bay will contain electronics for release and a latch that holds the SAIL in place. Upon separation from the launch vehicle, the SAIL will descend in the deployment bay, which will be under a parachute. Once RSO permission is given, an RF controlled latch will release the SAIL from the deployment bay, unfolding the rotor blades and legs and sending it into free fall. At this point, the motor will start spinning the rotor blades, generating lift to slow down the SAIL. The rotor blades will continue to operate based on pre-derived lift curves until landing. The SAIL will land in an upright orientation on the four deployed landing legs.
	Overview
Payload 2 (non-scored payload)	N/A

	Test Plans, Status, and Results
Ejection Charge Tests	Full-scale ejection testing planned for February 15th, 2024. Ejection testing will ensure that all altimeters are functioning correctly and that the charges have been sized correctly. Black powder will be loaded into the launch-day-appropriate sections. A manual switch will be used to activate the charges. The e-matches will be connected to a 9V battery, and upon a completed circuit, the charges will detonate. If the sections fail to separate, the ejection charge size has been underestimated. If the sections separate with too much force, the ejection charge size has been overestimated. Upon either case, the ejction charge size will be increased or reduced by 0.2 g respectively and the test will be repeated until separation is deemed successful.
Sub-scale Test Flights	The subscale test flight took place on November 18th, 2023. During the flight, all subscale launch vehicle systems operated successfully. The simulated payload mass deployed properly and all recovery events were successful. The RF command signal was successfully recieved by the nose cone reciever during descent, making it a viable method for on-command payload release for the fullscale design. Flight data and recovery images from this launch were included in the CDR report. This flight verifies NASA SL Requirement 2.18.
Vehicle Demonstration Flights	The Vehicle Demonstration Flight is planned for Febraury 24th-25th, 2024. This flight will determine if all team derived and NASA requirements have been met by the launch vehicle subsystems. This will satisfy NASA SLI Requirement 2.19.1.
Payload Demonstration Flights	The Payload Demonstration Flight is planned for March 23rd-24th, 2024. This flight will determine if all team derived and NASA requirements have been met by the payload subsytem. This will satisfy the NASA SLI Requirement 2.19.2.

Milestone Review Flysheet 2023-2024

Institution North Carolina State University Milestone Critical Design Review

	Transmitte	er #1	
Location of transmitter:	Avionics Bay		
Purpose of transmitter:	Launch Vehicle Tracking Device		
Brand	Eggtimer Rocketry	RF Output Power (mW)	100 mW
Model	Quasar	Specific Frequency used by team (MHz)	420.25 MHz
Handshake or frequency hopping? (explain)		Fixed Frequency, ID 8	
Distance to closest e-match or altimeter (in)		1 in	
Description of shielding plan:	There will be a sheet of aluminum foil added between the tracker and other recovery electronics on the sled.		

Transmitter #2						
Location of transmitter:	Nose Cone Sled					
Purpose of transmitter:	Nose Cone Tracking Device					
Brand	BigRedBee	RF Output Power (mW)	250 mW			
Model	BRB900	Specific Frequency used by team (MHz)	900 MHz			
Handshake or frequency hopping? (explain)	Fixed Frequency, ID 8					
Distance to closest e-match or altimeter (in)	35					
Description of shielding plan:	There will be a sheet of aluminum foil added around the tracker to shield from payload electronics in nose con					

Transmitter #3				
Location of transmitter:				
Purpose of transmitter:				
Brand	RF Output Power (mW)			
Model	Specific Frequency used by team (MHz)			
Handshake or frequency hopping? (explain)				
Distance to closest e-match or altimeter (in)				
Description of shielding plan:				

Transmitter #4				
Location of transmitter:				
Purpose of transmitter:				
Brand	RF Output Power (mW)			
Model	Specific Frequency used by team (MHz)			
Handshake or frequency hopping? (explain)	•			
Distance to closest e-match or altimeter (in)				
Description of shielding plan:				
bescription of sinclumg plan.				

Milestone Review Flysheet 2022-2023						
Institution North Carolina State University		Milestone	Critical Design Review			
Horitin	Carolina State Offiversity	Milestone	Critical Design Neview			
Transmitter #5						
Location of transmitter:						
Purpose of transmitter:						
Brand		RF Output Power (mW)				
Model		Specific Frequency used by team	ı (MHz)			
Handshake or frequency hopping? (ex	plain)					
Distance to closest e-match or altimeter	er (in)					
Description of shielding plan:						
	Transmitter	#6				
Location of transmitter:						
Purpose of transmitter:						
Brand		T				
Model		RF Output Power (mW) Specific Frequency used by team	(MHz)			
Handshake or frequency hopping? (ex	rolain)	Specific Frequency used by team	1 (141112)			
Distance to closest e-match or altimete	· ·					
Description of shielding plan:						
	Additional Com	ments				
	roperties - Main Parachute section of the nose cone. The format of the ent	of this flysheet includes both	-			